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Abstract

In this work, we present a family of time and space high order finite volume schemes for the solution of the full Boltzmann
quation. The velocity space is approximated by using a discrete ordinate approach while the collisional integral is approximated
y spectral methods. The space reconstruction is implemented by integrating the distribution function, which describes the
tate of the system, over arbitrarily shaped and closed control volumes using a Central Weighted ENO (CWENO) technique.
ompared to other reconstruction methods, this approach permits to keep compact stencil sizes which is a remarkable property

n the context of kinetic equations due to the considerable demand of computational resources. The full discretization is
hen obtained by combining the previous phase-space approximation with high order Implicit–Explicit (IMEX) Runge–Kutta
chemes. These methods guarantee stability, accuracy and preservation of the asymptotic state. Comparisons of the Boltzmann
odel with simpler relaxation type kinetic models (like BGK) are proposed showing the capability of the Boltzmann equation

o capture different physical solutions. The theoretical order of convergence is numerically measured in different regimes and
he methods are tested on several standard two-dimensional benchmark problems in comparison with Direct Simulation Monte
arlo results. The article ends with a prototype engineering problem consisting of a subsonic and a supersonic flow around
NACA 0012 airfoil. All test cases are run with MPI parallelization on several cores, thus making the proposed methods

uitable for parallel distributed memory supercomputers.
c 2021 Elsevier B.V. All rights reserved.

eywords: Kinetic Boltzmann equations; Central WENO reconstruction; Implicit–Explicit Runge–Kutta; Unstructured meshes; Spectral methods;
igh order of accuracy in space and time

1. Introduction

Kinetic models permit to describe a very large set of physical phenomena involving fluid and gases [1]. This
escription relies on a different point of view compared to standard fluid models such as compressible Euler or
avier–Stokes equations. In fact, the state of the system is determined through the time evolution of a distribution

unction giving the probability for a particle of the gas to be at a given position, with a given velocity, at a fixed
nstant of time. Consequently, the full problem depends, in general, on seven independent variables: three for the
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space, three for the velocity plus the time. This gives a very large spectrum of possibilities regarding the modeling:
typically rarefied gases and high speed flows can be described only through these approaches while fluid models
fail. The counterpart is however the requirement of very expensive simulations and very large variable storages
compared to compressible fluid dynamics [2].

In realistic simulations, the problem of the excessive computational cost is traditionally bypassed using Direct
imulation Monte Carlo methods [3,4] which are both versatile and very efficient, at least for describing steady
roblems involving high-speed flows. However, the simulation of unsteady flows remains a real challenge for
robabilistic methods due to the large statistical error introduced in the computation. Concerning deterministic
ethods, along with finite volume approaches [5–7], a recent strategy, based on a Lagrangian technique, has been

hown to be able to deal efficiently with multidimensional kinetic equations [8–10]. This method has been also
mployed to compute the solution of a full six dimensional Boltzmann model [11]. Nevertheless, even if very
fficient, this approach is only first order in time and space and it is based on a regular Cartesian mesh.

In this work, we instead deal with high order accurate space–time finite volume methods and unstructured meshes.
he methods here discussed are clearly more demanding in terms of computational resources compared to [8] but,
n the other hand, more accurate and versatile. In particular, the results presented in this work follows the approach
ecently forwarded in [12], where a simple kinetic model of relaxation type is considered. Here, we deal with the
uch more challenging and physically realistic Boltzmann kinetic model [1]. We remark that on this subject, up

o our knowledge, the number of articles dealing with multidimensional high order in space and time numerical
ethods for the full Boltzmann equation is extremely limited, in particular for high order methods on unstructured
eshes we are aware of only few examples [13–15] that are all concerned with discontinuous Galerkin methods and

xplicit time discretizations or instead low order implicit ones. Second order schemes with adaptive mesh refinement
ave been proposed in [16,17], where unstructured octree meshes are used. In this work we focus also on high order
n time implicit methods which are of paramount importance in kinetic equations [2].

To deal with the Boltzmann equation, we introduce four different levels of discretization: two different types of
iscretization for the velocity space, discretization of the physical space and time discretization. For the velocity
pace, we first introduce a traditional discrete velocity model (DVM) [18] which replaces the continuous kinetic
quation with a finite set of fixed velocities. This idea is then integrated by relying on a spectral approach for
fficiently approximate the Boltzmann integral [19–21] as detailed later. The transport part of the DVM model
s solved by a finite volume strategy, i.e. we evolve the cell averages of the distribution function. High order
pace accuracy requires a reconstruction that produces high order piecewise polynomials from the neighboring
ell averages. Many reconstruction strategies do exist [22], and we concentrate on a Central WENO reconstruction
CWENO) because of its compactness property. This strategy has been originally introduced in the context of
onservation laws in the one-dimensional case [23] and also used in our recent work [12]. In particular, we develop
hese reconstruction techniques on arbitrary polygonal meshes in the physical space. The CWENO reconstruction
rocedure has also been successfully used in a context of moving mesh schemes with mesh regeneration [24] and
mbedded in a quadrature-free finite volume scheme for solving all Mach compressible flows [25].

The time discretization is handled by using Implicit–Explicit (IMEX) Runge–Kutta (RK) methods [26]. As
etailed in [2], kinetic equations are particularly difficult to solve due to their multiscale nature in which collision and
ransport scales coexist. Close to the fluid limit, the collision rate grows exponentially, while the fluid dynamics time
cale conserves a much lower pace [1]. Several authors have tackled the above problem in the recent decades [27–40]
y developing and studying the class of methods known as Asymptotic Preserving (AP). These techniques allow the
ull problem to be solved for time steps independent of the collisional fast scale identified by the Knudsen number.

oreover, they are stable and consistent with the limit model provided by the compressible Euler equation in the
imit in which the collisional scale grows to infinity. To maintain simplicity and efficiency of the novel algorithm,
he advection operator is discretized explicitly in time (unlike [7]), although this choice might become non optimal
n case of very high-speed flows in hypersonic regimes, which would heavily affect the CFL stability condition for
xplicit advection schemes.

A last difficulty is present when the full Boltzmann model is considered. One has to deal with the discretization
f a five fold integral (for the three-dimensional case, or a three fold integral for the two-dimensional one) for
ach fixed value of the physical mesh. This is known to be a very challenging and computationally expensive
roblem when treated by deterministic techniques and it is one of the main reason why particles methods are often

referred in practice [2]. Here, this problem is overcome by Fourier techniques [19,41] which can be shown to have
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a complexity of the order of O(N dv log(N dv )) where N is the number of modes taken for the velocity space in one
irection and dv the dimension of the velocity space. We recall that the research field in this direction is very active
nd many recent contributions are available in the literature (see [42,43] and the references therein).

Summarizing, in this paper we extend the high order CWENO-IMEX Runge–Kutta Asymptotic Preserving
ethods on arbitrary shaped unstructured meshes developed in [12] to the Boltzmann case. These methods are

uccessively tested on benchmark multidimensional rarefied gas dynamics problems comparing relaxation type
inetic equations (like the simple BGK model) with the Boltzmann model. Comparisons of the novel numerical
chemes with Direct Simulation Monte Carlo simulations applied to the solution of the Boltzmann model are also
roposed showing an excellent agreement between the two different techniques. The theoretical accuracy is also
umerically verified for different regimes. Finally, a more realistic test case involving a flow around a NACA 0012
irfoil for different values of the Knudsen number is performed in the subsonic and in the supersonic regime. A
PI parallelization is realized distributing the space variable on different cores and the computational cost related

o the Boltzmann collision operator is discussed.
The article is organized as follows. In Section 2, we introduce the Boltzmann and the BGK models, their

roperties and their fluid dynamics limit. In Section 3, we present the four type of discretizations, namely the
iscrete ordinate discretization, the Fourier approximation of the Boltzmann operator, the CWENO reconstruction
nd the IMEX Runge–Kutta schemes applied to the phase-space discretization of the kinetic equations. Section 4 is
evoted to present several numerical examples of the schemes. In particular, convergence studies up to third order
ccuracy in space and time are proved, the performances of the method are measured and its capability to deal with
uch equations is shown. Conclusions and future investigations are discussed in a final section.

. The Boltzmann and the BGK equations

We consider kinetic equations belonging to the following class
∂ f
∂t

+ v · ∇x f = Q( f ). (1)

his equation supplemented by the initial condition f (x, v, t = 0) = f0(x, v) furnishes the time evolution of a
on-negative function f = f (x, v, t) which gives the distribution of particles with velocity v ∈ R dv in the space

x ∈ Ω ⊂ R dx at time t > 0. In the following, for simplicity, we will fix dx = dv = d, i.e. we consider the
ame dimension for both the physical and the velocity space. Moreover all numerical simulations are performed in
he dx = dv = 2 case which means in a four-dimensional space. The governing equations are presented in their
on-dimensional form. In this case, we assume R, the gas constant, fixed to R = 1. The operator Q( f ) describes
he effects of particle interactions and its form depends on the details of the microscopic dynamics. In particular,
e focus on two models. The first one is a relaxation type model

∂t f + v · ∇x f =
ν

ε
(M f − f ), (2)

which is known as the BGK equation [44] in the non-dimensional setting. In this model, the complex interactions
between particles are substituted by a relaxation towards the local thermodynamical equilibrium defined by the
Maxwellian distribution function M f

M f = M f [ρ, u, T ](v) =
ρ

(2πθ )d/2 exp
(

−|u − v|
2

2θ

)
, θ = RT , (3)

here ρ ∈ R , ρ > 0 and u ∈ R d are respectively the density and mean velocity. These quantities are related to
he distribution function through the following relations

ρ =

∫
R d

f dv, u =
1
ρ

∫
R d

v f dv, θ =
1

ρd

∫
R d

|v − u|
2 f dv. (4)

et us observe that the energy E is linked to the other macroscopic quantities through
1
2

dρT = E −
1
2
ρ|u|

2. (5)

Additionally, the parameter ν > 0 in (2) is the relaxation frequency which is taken in this work as ν = ρ. Let us
observe that this is a simplified version of a more general frequency law of the type ν = ρT 1−β with β depending on
3
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the type of gas under consideration (see [45] for a discussion). Other choices for the collision frequency have been
proposed in a recent work [46] which seem very effective in describing the physical system under consideration.

The second model we consider, which represents the core of our study, is represented by the more challenging
ase of the full Boltzmann equation

∂t f + v · ∇x f =
1
ε

∫
R d

∫
Sd−1

B(|v − v∗|, χ)
(

f (v′) f (v′

∗
) − f (v) f (v∗)

)
dv∗dχ. (6)

n this model, χ is a vector of the unitary sphere Sd−1
⊂ R d , whereas (v′, v′

∗
) are given by the relations

v′
=

1
2

(v + v∗ + |q|χ ), v′

∗
=

1
2

(v + v∗ − |q|χ ), (7)

here q = v − v∗ is the relative velocity and represents the post-collisional velocities. The kernel B characterizes
the details of the binary interactions. Here we concentrate on the case of the so-called Maxwell pseudo-molecules
model [1], i.e.

B(v, v∗, χ) = b0(cos θ ), (8)

hich implies that the collision rate is independent of the relative velocities between the particles in the gas.
One of the key properties of the collision operator which permits to establish the connection between kinetic

nd fluid models is that it guarantees the conservation of density, momentum and energy. This fact can be resumed
y writing∫

R d
Q( f )φ(v) dv = 0, (9)

here φ(v) = (1, v, |v|
2). The parameter ε appearing in both models (2) and (6) is the so-called Knudsen number

hich is used to rescale the equation in time and space to ease the transition from the different time scales which
haracterize a kinetic model. Since the Boltzmann operator satisfies

Q( f ) = 0 ⇐⇒ f = M f , (10)

ne can get in the limit ε → 0 from (6) or equivalently from (2) the compressible Euler equations by replacing f
ith M f and integrating in velocity space

∂ρ

∂t + ∇x · (ρu) = 0,

∂ρu
∂t

+ ∇x · (ρu ⊗ u + pI ) = 0,

∂ E
∂t

+ ∇x · ((E + p)u) = 0,

p = ρθ, E =
d
2
ρθ +

1
2
ρ|u|

2,

(11)

here p is the gas pressure. Using the Chapman–Enskog expansion f =
∑

∞

n=0 εn fn according to [1], the Navier–
tokes equations can be derived as well. We stress that the schemes used in this work permits to recover the same
roperty here observed for the continuous case: in the discrete case if ε → 0 the numerical schemes derived in
his work become automatically high order space–time discretizations of (11). In addition, these schemes enjoy the
roperty of being stable independently of the size of the Knudsen number ε (see [2,34,35] for details).

We need finally to define suitable boundary conditions in physical space in order to determine the solutions to
inetic equations of type (1). In this context, the only conditions that need to be discussed are the ones required
hen the fluid meets an object (the surface of a wing for instance) or equivalently hits a wall and particles interact
ith the atoms of the surface before being reflected backward. For v · n(x) ≤ 0 and x ∈ ∂Ω , where n(x) denotes

he unit normal pointing outside the domain boundary ∂Ω , such boundary conditions are modeled by

|v · n(x)| f (x, v, t) =

∫
v∗·n(x)>0

|v∗ · n(x)|K (v∗ → v, x, t) f (x, v∗, t) dv∗. (12)

he above expression means that the ingoing flux is defined in terms of the outgoing flux modified by a given

oundary kernel K . The only condition imposed is that positivity and mass conservation at the boundaries are

4
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guaranteed. A general condition gives for the ingoing velocities the following relation [1]

f (x, v, t) = (1 − α)R f (x, v, t) + αM f (x, v, t), (13)

n which x ∈ ∂Ω , v · n(x) ≤ 0. Therefore a fraction 1 − α of the outgoing molecules are reflected while the ones
belonging to the remaining part α are thermalized. The coefficient α, with 0 ≤ α ≤ 1, is called the accommodation
oefficient and it holds

R f (x, v, t) = f (x, v − 2n(x) (n(x) · v), t), M f (x, v, t) = µ(x, t)Mw(v), (14)

here Mw(v) is a Maxwellian distribution with unit mass, fixed temperature and zero mean velocity of the object
r of the wall. The value of µ is instead determined by mass conservation

µ(x, t)
∫

v·n(x)≤0
Mw(v)|v · n(x)|dv =

∫
v·n(x)>0

f (x, v, t)|v · n(x)|dv. (15)

n the numerical test involving boundaries, we will consider specifically the case α = 1 corresponding to full
ccommodation in which the re-emitted molecules have completely lost memory of the incoming molecules.

. The numerical method

This section is divided into four parts. The first one is about discrete velocity models, the second one is about
he finite volume method, the third one discusses the spectral method for the Boltzmann operator. The last one is
bout the time integration techniques.

.1. The Discrete Velocity Models (DVM)

The unbounded velocity space is truncated and the tails of the distribution function are then not considered. The
onsequence is that the exact conservation of macroscopic quantities is impossible, because in general the support of
he distribution function is non-compact as for instance for the Maxwellian equilibrium distribution M f . The same
olds true for the Boltzmann collision integral defined on the entire space R d . Different strategies can be adopted to
vercome the lack of conservation [47–49]. In [50] a correction procedure for the function f in the model collision
ntegral is proposed, which is applicable to various monatomic and diatomic kinetic models. However, let us observe
hat if the truncation is performed with sufficiently large bounds, the loss of conservation is typically negligible, in
act distribution functions tend to zero exponentially fast. This is the direction pursued in this work, although the
est of the scheme can be easily adapted to different choices.

This new bounded space is discretized with a finite number of points. These are called the discrete velocities,
he only velocities the particles can assume. Taking inspiration from [48], we introduce a Cartesian mesh V

V =
{
vk = v(k1..,kd ) = (k1∆v1 + vmin,1, . . . , kd∆vd + vmin,d )

}
, (16)

here vmin = (vmin,1, . . . , vmin,d ) is an arbitrary vector and ∆v = (∆v1, . . . ,∆vd ) is a constant in each direction
esh size in velocity. The components of the multi-index (k1, . . . , kd ) have some given bounds K = (K(i)), i =

, . . . , d , i.e. k(i) = 1, . . . , K(i). These bounds are fixed in such a way that vmax,i = K(i)∆vi + vmin,i . In this
etting, the continuous distribution function f is replaced by the vector fN (x, t) of size N = K(1) K(2)...K(d),
.e. N = K(1) K(2) for the specific case considered in this work. Each component of this vector is assumed to
e an approximation of the distribution function f at location vk :

fN (x, t) = ( fk(x, t))k, fk(x, t) ≈ f (x, vk, t). (17)

he discrete ordinate kinetic model consists then of the following system of equations to be solved

∂t fk + vk · ∇x fk = Qk( f ), k = 1, . . . , N . (18)

or the two cases here considered we have either Qk( f ) = Qk,BG K ( f )= ν
ε
(Ek[U ] − fk) for the BGK model, or

Qk( f ) = Qk,B( f ) for the Boltzmann model. In this case Qk,B( f ) corresponds to the solution given by the spectral
approximation of the collision integral (6) projected over the discrete space. Finally, the function Ek[U ] represents
a suitable approximation of M f , e.g. Ek[U ] = M f (x, vk, t), and U = (ρ, ρu, E)T is the vector of the macroscopic
quantities. These quantities are recovered from the knowledge of the distribution function fN (x, t) thanks to discrete
summations on the discrete velocity space.
5
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Fig. 1. Left: example of the construction of the polygonal tessellation (black dotted line) for element Pi (highlighted in gray) starting from
the Delaunay triangulation (red solid line) composed of triangles T j . The generator points xci are identified by black diamond markers,

hile the set of points lying within each primary element T j are highlighted by a blue dot and labeled with x p j . These points are then
sed to build the polygonal tessellation. The sub-triangulation is given by the dotted blue lines. Right: example of an arbitrarily polygonal
nstructured mesh.

.2. Space discretization

We discuss now the space discretization of the discrete system of Eqs. (18). This is based on a finite volume
ramework and on a Central WENO (CWENO) reconstruction [12,51]. We start from the definition of the mesh on
omains Ω which are considered two-dimensional and arbitrarily shaped. In particular, we realize a centroid based
oronoi-type tessellation made of NP non overlapping polygons Pi , i = 1, . . . NP . The mesh is constructed by
rstly building a primary Delaunay triangulation which counts NT triangles, obtained with a free meshing software,
.g. Gmsh [52]. The vertexes of the primary triangular elements provide the position xci , i = 1, . . . , NP of the
enerator points. Within each primary element T j , j = 1, . . . , NT , a point of coordinates x p j is defined, which
s allowed to be arbitrarily chosen. For instance, if x p j coincides with the center of mass of element T j , then a
oronoi tessellation is obtained. Other choices are also possible, e.g. considering the incenter of a triangle, that
ield different polygonal meshes. Here, the only requirement is that x p j lies inside its corresponding triangle T j .
nce the set of points x p j is given for all the triangles j = 1, . . . , NT , each generator point xci is associated to its

lement Pi by connecting the surrounding points x p j having this generator point as a vertex, see Fig. 1 for a visual
xplanation. The center of mass (or centroid) xmi of the obtained polygon Pi is evaluated following [53] as

xmi =
1

|Pi |

∫
Pi

x dx, (19)

while the set of NVi vertexes of polygon Pi is denoted with D(Pi ) Once the mesh is defined, we connect the
centroid xmi with each vertex of D(Pi ) and we subdivide the polygon Pi in NVi triangles. This sub-triangulation
s referred to as T (Pi ) and it is actually used to numerically integrate the unknowns. Fig. 1 shows an example of
uch mesh. We underline that the finite volume methods proposed in this work can deal with very general (but still
onforming) control volumes, that do not necessarily have to be Voronoi tessellations sensu stricto (e.g. arbitrarily
olygonal shape, mixed quad/tri elements, . . . ).

Let us now describe the data interpolation on this mesh. The cell average of each component of the vector
epresenting the distribution function at time tn is obtained by

f̄ n
k,i =

1
∫

fk(x, tn)dx, k = 1, ..N , x ∈ Pi , i ∈ [1, Np], (20)

|Pi | Pi

6
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w

T
t

Fig. 2. Reconstruction stencils for M = 2. The total number of neighbors of element Pi (colored in black) is ne = 2 · M (M) = 12. The
central stencil S̃i is highlighted in gray, while several one-sided reconstruction stencils Ss

i are shown with different colors. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

with |Pi | the volume of cell Pi . Let us also introduce the definition of f̄ n
i , that is the vector with components f̄ n

k,i

f̄ n
i = ( f̄ n

1,i , . . . , f̄ n
N ,i ), (21)

i.e. with components given by the discrete distribution function values within the same control volume Pi . We want
now to construct a high order non-oscillatory polynomial representation of the distribution function f (x, vk, t)
from the cell averages f̄ n

k,i . This quantity will be addressed in the following with f W,n
k,i (x). In order to obtain

this polynomial, we first introduce the (possibly) oscillating optimal polynomial function of arbitrary degree M :
popt,k,i (x). The total number of degrees of freedom M (M) is a function of the polynomial degree M and is given
by

M (M) =
1
2

(M + 1)(M + 2). (22)

We consider then a central stencil S̃i composed of ne = 2 · M (M) cells containing the cell Pi where the solution
needs to be computed and its closest (ne − 1) neighbors (see Fig. 2 for a visual explanation). As suggested in [54],
on general unstructured meshes it is better to consider a total number of stencil elements ne larger than the exact
number of degrees of freedom M (M) for avoiding ill posed interpolation problems which may arise due to the
unstructured nature of the mesh. The polynomial popt,k,i (x) relative to the stencil S̃i is then defined by solving

popt,k,i (x) = argmin
p∈Pi

∑
P j ∈S̃i

(
f̄ n
k, j −

1
|Pj |

∫
P j

p(x)dx

)2

, (23)

here Pi is the set of all polynomials PM of degree at most M , satisfying

Pi =

{
p ∈ PM : f̄ n

k,i =
1

|Pi |

∫
Pi

p(x)dx
}

⊂ PM . (24)

his means that the function popt,k,i (x) is, among all the possible polynomials of degree M , the only one that shares
he same cell average of the distribution function in the cell Pi , i.e. f̄ n

k,i , while being close in the least-square sense
˜
to the other cell averages in the stencil Si . This technique was originally proposed in [54] and more recently used

7
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also in the context of particle methods for kinetic equations [46,55]. In order to complete the reconstruction, one
needs now a set of polynomials of degree one which permit to eliminate spurious oscillations when present. These
are obtained defining a new set of stencils, all including the central cell Pi , and other two cells. An example of
such sets is reported in Fig. 2. For each stencil Ss

i , s = 1, ..NVi , we indicate by ps
k,i (x) this linear polynomial.

It remains to define one last central polynomial p0
k,i (x). This is computed by difference between the polynomial

popt,k,i (x) and the linear combination of the polynomial functions ps
k,i (x) of lower degree, that is

p0
k,i (x) =

1
λ0,i

⎛⎝popt,k,i (x) −

NVi∑
s=1

λs,i ps
k,i (x)

⎞⎠ ∈ PM , (25)

where λ0,i , . . . , λNVi ,i
are positive coefficients such that

∑NVi
s=0 λs,i = 1. Specifically, we set the non-normalized

weights as λ̃0,i = 200 and λ̃s,i = 1 for s = 1 . . . NVi , thus the normalized weights used in (25) result to be
λs,i = λ̃s,i/λ̃sum with λ̃sum :=

∑NVi
s=0 λ̃s,i . The polynomials ps

k,i (x) are expressed for all stencils s = 0, . . . , NVi
through the following conservative expansion

ps
k,i (x) =

M∑
ℓ=1

ϕℓ(x) p̂s
ℓ,k,i , (26)

with p̂s
ℓ,k,i representing the unknown expansion coefficients for the stencil s. The basis functions ϕℓ are defined

using a Taylor series in the space variables x of components (x1, x2) of degree M and 1 for the central and the
lateral stencils, respectively. This expansion is directly defined on the physical element Pi , expanded about its center
of mass xmi and normalized by the characteristic length hi of the element (the square root of the element surface),
that is

ϕℓ(x1, x2)|Pi =
(x1 − xmi ,1)rℓ

hrℓ
i

(x2 − xmi ,2)qℓ

hqℓ
i

−

∫
Pi

(x1 − xmi ,1)rℓ

hrℓ
i

(x2 − xmi ,2)qℓ

hqℓ
i

dx, 0 ≤ rℓ+qℓ ≤ M, (27)

ith ℓ = 1, . . . , M denoting a mono-index that progressively counts the total number of degrees of freedom in the
xpansion identified by the multi-index (rℓ, qℓ). In the above construction and in the reconstruction equations (23)
nd (24), the integrals are computed in each Voronoi polygon Pi by summing the contribution of each sub-triangle

T j ∈ T (Pi ) with Gauss quadrature rules of suitable accuracy [56]. This ensures that the polynomial basis functions
27) are integrated exactly up to the desired order of accuracy.

Therefore, the final polynomial f W,n
k,i (x) is obtained by a hybridization among all stencils s ∈ [0, NVi ] as

f W,n
k,i (x) =

NVi∑
s=0

ωs,k,i ps
k,i (x), (28)

here the nonlinear weights ωs,k,i are given by the standard expressions

ωs,k,i =
ω̃s,k,i∑NVi

s=0 ω̃s,k,i

, with ω̃s,k,i =
λs,i(

σs,k,i + ϵ
)r , (29)

here ϵ = 10−14 and r = 4 are chosen according to [57] and σs,k,i are oscillation indicators simply given by

σs,k,i =

M∑
ℓ=2

(
p̂s

ℓ,k,i

)2
. (30)

The CWENO reconstruction procedure is addressed with superscript W and constitutes a purely spatial operator
hat can in principle be applied to any given quantity that is defined as a cell average. In fact, in the following, the
ame CWENO reconstruction will be applied to the collision operator Qk( f ). To be more precise, starting from the
efinition of the cell average collision operator Qk( f̄ n

i ), we perform an analogous CWENO reconstruction which
ives rise to the polynomial QW

k ( f̄ n
i )(x).

Once the reconstruction procedure has been carried out, a finite volume method is used to solve the governing
quations. Eq. (18) is integrated on each control volume Pi obtaining

∂t

∫
fk dx +

∫
vk · ∇x fk dx =

∫
Qk( f ) dx, k = 1, . . . , N , i = 1, . . . , Np, (31)
Pi Pi Pi

8
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where Qk( f ) represents either the BGK operator (2) or the Boltzmann one (6). Using the divergence theorem, we
et

∂t

∫
Pi

fk dx = −

NVi∑
j=1

∫
∂ Pi j

L( fk) · ni j d S +

∫
Pi

Qk( f ) dx, k = 1, . . . , N , i = 1, . . . , Np, (32)

ith ni j representing the unit outward normal to the element Pi , ∂ Pi j denoting the face shared between element Pi

nd its neighbor Pj and L( fk) being the flux function (vk fk). Finally, by introducing a first order in time explicit
uler discretization and using the finite volume interpretation, we write

f̄ n+1
k,i = f̄ n

k,i −
∆t
|Pi |

NVi∑
j=1

∫
∂ Pi j

L( f̄ n
k,i ) · ni j d S +

∆t
|Pi |

∫
Pi

Qk( f̄ n
i ) dx, k = 1, . . . , N , i = 1, . . . , Np, (33)

here the boundary fluxes are evaluated relying on the Rusanov numerical flux function [58]. Now, in order to
btain a high order in space scheme, we employ the CWENO reconstruction presented previously. This implies that

f̄ n
k,i is replaced by f W,n

k,i (x) given by (28) for the computation of the flux functions and that Qk( f̄ n
i ) is replaced by

QW
k ( f̄ n

i )(x) for the computation of the high order space approximation of the collision term. This last reconstruction
eeds the knowledge of the cell averages Qk( f̄ n

i ), where we recall the definition of f̄ n
i given by (21). These

uantities, in the case of the Boltzmann operator, will be obtained from the approximation of the collision integral
hrough the spectral method described in the next part. The high order in space finite volume scheme reads then

f̄ n+1
k,i = f̄ n

k,i −
∆t
|Pi |

NVi∑
j=1

∫
∂ Pi j

L( f W,n
k,i (x)) · ni j d S +

∆t
|Pi |

∫
Pi

QW
k ( f̄ n

i )(x) dx, k = 1, . . . , N , i = 1, . . . , Np. (34)

The above scheme, apart from being only first order in time, suffers from the stiffness of the equation when the
Knudsen number is small. Next, we discuss high order time discretizations and a remedy to the stiffness of the
kinetic equations.

3.3. Spectral discretization of the Boltzmann operator

When the Boltzmann model (6) is employed, a fast spectral method is used to evaluate the collision term Q( f̄ n
i ),

and subsequently this result is projected over the discrete ordinate space giving Qk( f̄ n
i ) employed in (33) and then

n the high order space discretization (34). We proceed as follows.

• We compute an approximation of the Boltzmann operator by using the spectral method detailed in the following
in the center of the control volume for each cell Pi , which provides the cell average quantities Qk( f̄ n

i ).
• Then, as for the distribution function f n

k,i , for each k = 1, . . . , N , we reconstruct its value in space through
the procedure of Section 3.2, hence obtaining QW

k ( f̄ n
i )(x). This is possible since the CWENO reconstruction

procedure is a spatial operator that applies to any given cell centered quantity. As a consequence, the high
order polynomials QW

k ( f n
i )(x) can be easily obtained with (28) by replacing f̄ n

k, j with Qk( f̄ n
j ) in (23)–(24)

and following the same strategy outlined for the computation of f W,n
k,i (x).

ince collisions act only at a local level, we restrict ourselves in this section on a given cell Pi and we omit the
ependence of the distribution function f on space and time. The same computation is repeated for all volumes

Pi , i = 1, . . . , NP and times tn, n = 0, . . . , Nt (with Nt being the total number of time steps). Only the dependency
n the velocity variable v is considered for the distribution function f , i.e. f = f (v). In addition, since we deal
ith two dimensions in velocity space, we also restrict to this situation in the description of the method.
Following the idea introduced in [19,59], we suppose, as done for the discrete ordinate method, the distribution

unction f to have compact support on the ball B0(R) of radius R centered in the origin. Then, to avoid the aliasing
henomena, at least in a single time iteration, we restrict f (v) on [−T, T ]2 with T = (3 +

√
2)R/2 and we assume

f (v) = 0 outside the ball B0(R). We also extend f (v) to a periodic function on the set [−T, T ]2. Let us observe
that supp (Q( f )(v)) ⊂ B0(

√
2R) and thus this choice is enough to avoid aliasing in one time step. However, the

support of f increases with time and thus aliasing can only be minimized by this approach. To simplify notation,
let us now take T = π . This gives R = λπ with λ = 2/(3 +

√
2). Using one index to denote the two-dimensional
9
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sums, we have that the approximate function fNM can be represented as the truncated Fourier series by

fNM (v) =

NM∑
k1,k2=−NM

f̂keik·v
=

NM∑
k=−NM

f̂keik·v, (35)

f̂k =
1

(2π )2

∫
[−π,π ]2

f (v)e−ik·v dv, (36)

here NM identifies the modes employed in the approximation. We then obtain a spectral quadrature of our collision
perator by projecting the truncated Boltzmann operator onto the space of trigonometric polynomials of degree less
r equal to NM , i.e.

Q̂k =
1

(2π )2

∫
[−π,π ]2

Qb( fNM )e−ik·v dv, k = −NM , . . . , NM . (37)

By substituting expression (35) in (37) one gets

Q̂k =

NM∑
l,m=−NM

l+m=k

f̂l f̂m β̂(l, m), k = −NM , . . . , NM , (38)

where β̂(l, m) = B̂(l, m) − B̂(m, m) are given by

B̂(l, m) =

∫
B0(2λπ )

∫
S1

|q|σ (|q|, cos θ )e−i(l·q+
+m·q−) dχ dq, (39)

with

q+
=

1
2

(q + |q|χ ), q−
=

1
2

(q − |q|χ ). (40)

he usage of (38) as approximation of the collision operator requires O(N 4
M ) operations. In order to reduce the

umber of operations, one can express the Boltzmann operator adopting another representation [60]. Omitting the
etails, this second representation reads

Qb( f ) =

∫
R 2

∫
R 2

B̃(x, y)δ(x · y) [ f (v + y) f (v + x) − f (v + x + y) f (v)] dx dy, (41)

ith

B̃(|x |, |y|) = 2 σ

(√
|x |

2
+ |y|

2,
|x |√

|x |
2
+ |y|

2

)
. (42)

his transformation yields the following new spectral quadrature formula

Q̂k =

NM∑
l,m=−NM

l+m=k

β̂F (l, m) f̂l f̂m, k = −NM , . . . , NM , (43)

here β̂F (l, m) = B̂F (l, m) − B̂F (m, m) are now given by

B̂F (l, m) =

∫
B0(R)

∫
B0(R)

B̃(x, y) δ(x · y) ei(l·x+m·y) dx dy. (44)

ow, expression (43) can be evaluated with a convolution structure by approximating each β̂F (l, m) by a sum

β̂F (l, m) ≃

A∑
p=1

αp(l)α′

p(m),

where A represents the number of finite possible directions of collisions. This gives a sum of A discrete convolutions
and, consequently, the algorithm can be computed in O(A N 2

M log2 N 2
M ) operations by means of standard FFT

echnique (see [19] for details). In practice, due to the spectral accuracy guaranteed by the proposed approach, the
umber of collision directions which is sufficient to consider is low, hence we typically employ A = 8 directions

n our simulations.

10
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Table 1
Butcher tableau of explicit and implicit Runge–Kutta schemes used to construct an IMEX schemes.

3.4. Time discretization

We discuss how to improve the time discretization and to get a fully high order space and time discretization.
his is done through the use of a particular class of Implicit–Explicit (IMEX) methods [26,61]. These methods are
eeded to handle the different scales induced by the collision and the transport operators. In particular, in kinetic
heory one is interested in having a method which is able to handle with the same time step ∆t and the same accuracy

different regimes (dense or rarefied) identified by different values of the Knudsen number ε. Our aim is precisely
to be capable of capturing the fluid limit (11) without time step limitations due to the fast scale dynamics induced
by collisions. This request is equivalent to the notion of asymptotic-preserving (AP) schemes [2,28,32,33] and the
schemes here introduced belong to this special class. In particular, we consider the extension to the finite volume
framework of the schemes discussed from the theoretical point of view in [26,34]. In details, starting from (32)
and generalizing the first order time discretization (33), we introduce a class of high order in time schemes which
general formulation writes

F̄ (l)
k,i = f̄ n

k,i − ∆t
l−1∑
m=1

ãlm⟨L(F W,(m)
k,i )⟩x + ∆t

ι∑
m=1

alm⟨QW
k (F̄ (m)

i )⟩x (45)

f̄ n+1
k,i = f̄ n

k,i − ∆t
ι∑

m=1

w̃m⟨L(F W,(m)
k,i )⟩x + ∆t

ι∑
m=1

wm⟨QW
k (F̄ (m)

i )⟩x . (46)

n the above formula, the functions F̄ (l)
k,i given by (45) are the so-called stage values of the Runge–Kutta method

hich identify the cell averages of the solution at different time levels between [tn, tn+1]. In the same way, F W,(m)
k,i (x)

s the high order CWENO reconstruction of the stage value (m) obtained following the same strategy outlined for
f W,n
k,i (x). Using these values and the CWENO reconstruction of Qk(F̄ (m)

i ), i.e. QW
k (F̄ (m)

i ), it is possible to determine
the quantities

⟨L(F W,(l)
k,i )⟩x =

1
|Pi |

NVi∑
j=1

∫
∂ Pi j

L(F W,(l)
k,i (x)) · ni j d S, (47)

nd

⟨QW
k (F̄ (l)

i )⟩x =
1

|Pi |

∫
Pi

QW
k (F̄ (l)

i )(x) dx, (48)

here the integrals are obtained by a suitable Gauss quadrature formula that is exact up to the order of accuracy
f the scheme M + 1.

The coefficients ãlm and alm in (45)–(46) characterize the explicit and the implicit Runge–Kutta method,
espectively, together with the vectors w̃ = (˜̃w1, . . . , w̃ι)T and w = (w1, . . . , wι)T . We refer to [61,62] for more
etails on such methods in a general framework (order conditions and properties). A double Butcher tableau is
ypically adopted for efficiently describing the class of IMEX schemes, as reported in Table 1, where the coefficients
˜ and c are given by the classical relation c̃l =

∑l−1
m=1 ãlm , cl =

∑l
m=1 alm .

From (48), it is clear that the direct application of such method is very difficult in practice, at least in the case
f the Boltzmann operator. This, in fact, would need the inversion of a nonlinear system involving the operator
QW

k (F̄ (l)
i )⟩x at each stage of the Runge–Kutta time stepping. In order to overcome this additional difficulty, we
ow distinguish the case of the BGK and the case of the Boltzmann operator. For the case of the BGK operator,

11
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we observe that the high order integration can be conveniently written as proposed in [63], hence

⟨QW
k (F̄ (l)

i )⟩x =
1

|Pi |

∫
Pi

QW
k (F̄ (l)

i )(x) dx = ⟨Qk(F̄ (l)
i )⟩x + O(h2), (49)

here h is the typical mesh size and F̄ (l)
i are the cell average quantities at the stage l. This means that the high

rder integral of the collision operator can be expressed by the cell average of the source term plus a second order
pace error. Thanks to this observation, then the time integrator can be recast as

F̄ (l)
k,i = f̄ n

k,i − ∆t
l−1∑
m=1

ãlm

(
⟨L(F W,(m)

k,i )⟩x−∆Qk(F̄ (m)
i )

)
+ ∆t

ι∑
m=1

alm⟨Qk(F̄ (m)
k )⟩x (50)

f̄ n+1
k,i = f̄ n

k,i − ∆t
ι∑

m=1

w̃m

(
⟨L(F W,(m)

k,i )⟩x−∆Qk(F̄ (m)
i )

)
+ ∆t

ι∑
m=1

wm⟨Qk(F̄ (m)
i )⟩x , (51)

here the quantities ∆Qk(F̄ (m)
i ) are given by

∆Qk(F̄ (m)
i ) = ⟨QW

k (F̄ (m)
i )⟩x −

1
|Pi |

∫
Pi

Qk(F̄ (m)
i ) dx, = ⟨QW

k (F̄ (m)
i )⟩x − ⟨Qk(F̄ (m)

i )⟩x , (52)

.e. they represent the difference between the high order evaluation of the source term and the corresponding cell
verage. This permits a direct evaluation of the implicit terms without resorting to the approximate solution of
onlinear systems. To better understand this delicate aspect, let us remark that the stage evaluation of the cell
verage of the distribution function (50) can be rewritten as

F̄ (l)
k,i = f̄ n

k,i − ∆t
l−1∑
m=1

ãlm

(
⟨L(F̄ W,(m)

k,i )⟩x−∆Qk(F̄ (m)
i )

)
+ ∆t

l−1∑
m=1

alm⟨Qk(F̄ (m)
i )⟩

+
∆t
|Pi |

∫
Pi

ν

ε

(
Ek[Ū (l)

i ] − F̄ (l)
k,i

)
dx, (53)

here the only implicit term is now the diagonal factor ν
ε

(
Ek[Ū (l)

i ] − F̄ (l)
k,i

)
since the implicit methods which are

onsidered in this work are all diagonally implicit. Let us notice now that F̄ (l)
k,i can easily be moved to the left hand

side of (53), while Ek[Ū (l)
i ] depends only on the first three moments of the distribution function Ū (l)

i and these are
imply obtained by integrating in velocity space the cell centered values of the distribution function again from
53). Thus, to have a completely determined method, one needs only to compute the moments Ū (l)

i . This is done by
ntegrating equation (53) in velocity space which is explicitly obtained, since collision terms disappear as a result
f the integration from formula

Ū (l)
i = Ū n

i − ∆t
l∑

m=1

ãlm LW
U (Ū n

i ), (54)

here LW
U (Ū n

i ) is a high order evaluation of the macroscopic fluxes for density, momentum and energy, respectively.
his is obtained again by applying the same CWENO reconstruction procedure to the macroscopic cell centered
uantities Ū n

i . As a consequence, Ū (l)
i and thus Ek[Ū (l)

i ] can be explicitly evaluated and then the scheme (50)–(51)
s explicitly solvable. This concludes the presentation of the scheme for the BGK case.

In the case of the Boltzmann operator (6), one cannot directly employ an equivalent strategy to the one above
escribed for the BGK case. In fact, even if equation (49) still holds true, it is not possible to invert the cell centered
ntegral of Q( f ), namely ⟨Qk(F̄ (l)

i )⟩x . Consequently, the scheme (50)–(51) is not explicitly solvable and another
olution has to be found. This problem can be circumvented relying on a penalization strategy as firstly introduced
n [29], where the penalization term is the cell centered BGK operator. In fact, in stiff regimes the solution f is

close to the Maxwellian equilibrium M f and then the Boltzmann and the BGK models furnish closer and closer
solutions as the fluid regime is approached. Thus, one can rewrite Eq. (1) as
∂t f + v · ∇x f = G P ( f ) + Q BG K ( f ), (55)

12
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where Q BG K is the BGK operator and G P ( f ) = Qb − Q BG K with Qb the Boltzmann collision operator. Now,
he idea is to use a time discretization in which Q BG K is implicit while G P ( f ) is explicit. The modified IMEX
unge–Kutta schemes become then

F̄ (l)
k,i = f̄ n

k,i − ∆t
l−1∑
m=1

ãlm

(
Gk,P (F̄ (m)

i ) + ⟨L(F̄ W,(m)
k,i )⟩x

)
+ ∆t

ι∑
m=1

alm⟨Qk,BG K (F̄ (m)
i )⟩x (56)

f̄ n+1
k,i = f̄ n

k,i − ∆t
ν∑

m=1

w̃m

(
Gk,P (F̄ (m)

i ) + ⟨L(F̄ W,(m)
k,i )⟩x

)
+ ∆t

ι∑
m=1

wm⟨Qk,BG K (F̄ (m)
i )⟩x , (57)

here

Gk,P (F̄ (m)
i ) = ⟨QW

k,b(F̄ (m)
i )⟩x − ⟨Qk,BG K (F̄ (m)

i )⟩x . (58)

s for the case of the BGK operator, the only implicit term is ν
ε

(
Ek[Ū (l)

i ] − F̄ (l)
k,i

)
which can be computed at the

aid of (53)–(54). This concludes the presentation of the time integration methods.
Finally, thanks to the choice done about the numerical time integration, in all the numerical simulation discussed

in the next section, the time step is fixed according to a CFL-type stability condition as

∆t = CFL
(

minΩ hi

maxk(|vk |)

)
, CFL =

1
2
, (59)

hich means it is limited only by the hyperbolic transport term. In practice, we consider in the next section three
ime integration schemes. The first one is the standard first order implicit–explicit Euler scheme for which we do
ot report the Butcher tableau. The second one is the second order ARS(2,2,2) [61] scheme

0 0 0 0
γ γ 0 0
1 δ 1 − δ 0

δ 1 − δ 0

0 0 0 0
γ 0 γ 0
1 0 1 − γ γ

0 1 − γ γ

with γ = 1 − 1/
√

2 and δ = 1 − 1/(2γ ), while the third one is the third order BPR(3,4,3) [64]

0 0 0 0 0 0
1 1 0 0 0 0

2/3 4/9 2/9 0 0 0
1 1/4 0 3/4 0 0
1 1/4 0 3/4 0 0

1/4 0 3/4 0 0

0 0 0 0 0 0
1 1/2 1/2 0 0 0

2/3 5/18 −1/9 1/2 0 0
1 1/2 0 0 1/2 0
1 1/4 0 3/4 −1/2 1/2

1/4 0 3/4 −1/2 1/2

The stability properties of these schemes, the capability of describing different collisional regimes and the
consistency with the underlying compressible Euler model have been discussed in [26] in the case of finite difference
methods for the Boltzmann and the BGK equations while in the case of finite volume methods for the sole BGK
model in [12].

4. Numerical results

In this section, we measure the capability of the presented method to describe fluid flows under different regimes.
Our analysis starts by a set of numerical convergence tests in velocity, in space, in time and in space–time.
These convergence studies are carried out in different regimes identified by the value of the Knudsen number.
In addition, we also report the computational efforts involved in the resolution of the Boltzmann and the BGK
models. The second part is devoted to some standard benchmark studies in rarefied gas dynamics. The last part is
dedicated to applications: we study the flow around a NACA 0012 airfoil. This study is possible only thanks to
the arbitrarily shaped finite volume approach used, which permits to describe the generic geometry considered. For
all computations the gas polytropic index is set to γ = 2. Boundary conditions are specified for each test case:

all boundaries are handled relying on the mass balance (15), while Dirichlet conditions are used in part of the

oundary which is not affected by any characteristic waves up to the final time of the simulation.

13
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Table 2
Numerical convergence results for the homogeneous Boltzmann equation using the Spectral method
presented in 3.3 on a sequence of refined Cartesian meshes of size ∆v in the velocity space. The
error is measured for the distribution function in the L1, L2 and L∞ norms using the definition 3.3 at
time t f = 0.1.

Nv ∆v fL1 O( fL1 ) fL2 O( fL2 ) fL∞
O( fL∞

)

16 1.60E−00 2.392E−02 – 1.516E−02 – 1.660E−03 –
32 7.74E−01 1.183E−03 4.1 5.235E−04 4.6 4.252E−05 5.0
64 3.81E−01 5.493E−09 17.3 1.702E−09 17.8 1.159E−10 18.1
128 1.89E−01 1.425E−13 15.1 8.916E−14 14.1 1.096E−14 13.2

Fig. 3. Time evolution of the L1 error in velocity space computed according to (61) up to t = 10.

4.1. Numerical convergence studies

This part is dedicated to the convergence tests. The first test validates the correct implementation of the spectral
method for the discretization of the Boltzmann operator. Here we resolve the Boltzmann homogeneous equation in
the 2D velocity space. The following analytical solution [65]

f (v, t) =
exp (−v2/2S)

2π S2

[
2S − 1 +

1 − S
2S

v2
]

with S = 1 −
exp (−t/8)

2
, (60)

is approached by the spectral scheme. We adopt a domain V = [−12; 12] × [−12; 12], for which we consider
different values velocity points Nv corresponding also to the number of modes of the Fourier expansion. The
different configurations for the velocity mesh are reported in Table 2. The errors in the L1 and L2 norms are
obtained with the following formula

L p(∆v, t) =

(∑Nv
k=1 | f∆v(vk, t) − fre f (vk, t)|p∑Nv

k=1 | fre f (vk, t)|p

)1/p

, (61)

with ∆v representing the characteristic mesh size in the velocity space. The quantities f∆v and fre f represent the
numerical and reference solutions of the distribution function computed on the velocity points, respectively. The
L∞ norm is also computed, for which we simply measure the maximum distance between exact and computed
solutions. Table 2 shows the results of such analysis at the final time t f = 0.1. As expected, the convergence rate

rows very fast and thus errors become closer to machine precision. Fig. 3 reports the L1 errors over time up to
f = 10.

For the second part of convergence studies, we consider as test case an isentropic vortex in physical space [66].

he velocity space is now fixed to V = [−10; 10] × [−10; 10] and it is paved with a Cartesian mesh of 900 equal
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Fig. 4. Initial density distribution of the smooth isentropic vortex on an unstructured triangular mesh (left) and on a Voronoi tessellation
right) with characteristic mesh size h = 0.25.

elements. Periodic boundary conditions are imposed on each side of the box. The initial condition is given by

U = (ρ, ux , u y, T ) = (1 + δρ, 1 + δux , 1 + δu y, δT ), (62)

where the perturbations for temperature δT , density δρ and velocity (δux , δu y) are

δT = −
(γ − 1)β2

8γπ2 e1−R2
, δρ = (1 + δT )

1
γ−1 − 1,

(
δux

δu y

)
=

β

2π
e

1−R2
2

(
−(y − 5)

(x − 5)

)
,

ith β = 5 and R =
√

x2 + y2 denoting the generic radial coordinate. Fig. 4 shows the initial density distribution
of this smooth isentropic vortex on a triangular and on a polygonal unstructured mesh. The space corresponds to
the box Ω = [0; 10] × [0; 10] discretized with a sequence of refined unstructured meshes of characteristic size
h(Ω ) =

(∑NP
i=1 hi

)
/NP with hi =

√
|Pi | and |Pi | denotes the surface of the cell Pi . The errors are measured in the

L1 and L2 norms for respectively the density and the temperature as follows:

L1 =

∫
Ω

⏐⏐Ure f (x, y) − Uh(x, y)
⏐⏐ dx dy, (63)

L2 =

√∫
Ω

(
Ure f (x, y) − Uh(x, y)

)2 dx dy. (64)

ere, Uh(x, y) represents the high order reconstructed solution for the macroscopic quantities obtained with our
cheme, while Ure f (x, y) is a prescribed reference solution. We perform several convergence measures: convergence
f the time discretization and convergence of the space–time discretization. More in details:

• In the limit ε → 0, since the analytical solution is known, we consider a space–time error: Ure f (x, y) =

U(x − t, y − t), namely the exact solution for the moments is a translation with unit velocity both in x and y
directions as the Knudsen number vanishes.

• If ε ̸= 0, the reference solution is instead the one computed on the same phase-space mesh using a very small
time step ∆te ≪ ∆t , i.e. Ure f (x, y, t f ) = Uht (x, y, t f ). In this case, a time convergence is proposed.

he validation of the CWENO reconstruction procedure has been already presented up to fourth order in the previous
ork [12] and we omit it here. The results of this test are shown in Table 3 for ε = 0 while in Table 4 for ε = 10−3,

n Table 5 for ε = 10−2 and finally in Table 6 for ε = 1. The numerical results confirm that the CWENO-IMEX
chemes applied to the Boltzmann model achieve the theoretical order of accuracy in velocity, in space and in time.

We conclude this part by reporting in Table 7 the computational times needed to run the simulations detailed in

he rest of the section. In particular, we aim at comparing the costs involved in the computation of the Boltzmann
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Table 3
Numerical convergence results for the Boltzmann model at time t f = 0.1 with ε = 0 on a
sequence of refined polygonal meshes of size h(Ω ). The errors are measured in L1 and L2
norm and refer to the variables ρ (density) and T (temperature).

CWENO-IMEX O2 K n = 0

h(Ω ) ρL1 O(ρL1 ) ρL2 O(ρL2 )

3.84E−01 4.523E−02 – 1.585E−02 –
1.96E−01 8.759E−03 2.5 2.996E−03 2.5
1.32E−01 3.793E−03 2.1 1.218E−03 2.3
9.90E−02 2.078E−03 2.1 6.853E−04 2.0

h(Ω ) TL1 O(TL1 ) TL2 O(TL2 )

3.84E−01 1.589E−01 – 6.601E−02 –
1.96E−01 2.770E−01 2.6 3.779E−02 2.5
1.32E−01 1.075E−02 2.4 1.907E−02 2.4
9.90E−02 5.707E−03 2.2 1.136E−02 2.2

CWENO-IMEX O3 K n = 0

h(Ω ) ρL1 O(ρL1 ) ρL2 O(ρL2 )

3.84E−01 4.971E−02 – 1.717E−02 –
1.96E−01 6.951E−03 2.9 2.425E−03 2.9
1.32E−01 2.044E−03 3.1 6.989E−04 3.1
9.90E−02 9.111E−04 2.8 3.102E−04 2.8

h(Ω ) TL1 O(TL1 ) TL2 O(TL2 )

3.84E−01 1.753E−01 – 5.725E−02 –
1.96E−01 2.601E−02 2.8 8.721E−03 2.8
1.32E−01 7.632E−03 3.1 2.564E−03 3.1
9.90E−02 3.315E−03 2.9 1.136E−03 2.8

and the BGK model, respectively. The results show that, in the case of two-dimensional velocity and physical space
simulations, the two models are almost equivalently expensive. Thus, the main part of the computation is devoted
to the determination of the numerical fluxes in the hyperbolic part. We can conclude that in the tested cases the
spectral method is indeed so fast that it does not engrave on the global simulation time.

4.2. Lax problem

We consider now a classical Lax shock tube Riemann problem. The essential feature one can observe in rarefied
ows with respect to dense fluids is the presence of a physical diffusion which mitigates the waves making the
olution smoother. From the numerical side, another important aspect consists in analyzing the capability of the
ethods working on unstructured meshes to keep the one dimensional structure of the solution even if the element

dges are not aligned with the fluid motion. The computational domain is the box Ω = [−1; 1] × [−0.05; 0.05]
discretized with [200 × 10] triangular control volumes with characteristic mesh size of h(Ω ) = 0.01. Periodic

oundary conditions are set in y-direction, while Dirichlet boundaries are imposed in the x-direction. The velocity
pace V = [−15; 15] × [−15; 15] counts a total number of 322

= 1024 regular Cartesian control volumes. The
nitial condition is

UL = (0.445, 0.698, 0, 7.928) , UR = (0.5, 0, 0, 1.142) , (65)

ith the two states separated at x = 0. Fig. 5 shows a one dimensional cut along the x-axis for the density, the
orizontal velocity and the temperature profiles for the Boltzmann model with ε = 10−5 at the top and for ε = 10−4

nd ε = 10−3 in the middle at the final time of the simulation t f = 0.1. The third order CWENO-IMEX method
s employed using 200 cells in space. The numerical results are compared against the exact solution of the Euler
quations of compressible gas dynamics, highlighting the correct behavior of our scheme as ε → 0. A comparison
etween our approach and a Direct Simulation Monte Carlo method (DSMC) solving the Boltzmann equation (6) is

−4 2
roposed in the case in which ε = 0.005 and ε = 5 · 10 . This method works on a regular Cartesian mesh of 250
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Table 4
Numerical convergence results for the Boltzmann model at time t f = 9·10−3 with ε = 10−3

on a triangular mesh with characteristic mesh size h(Ω ) = 1/3. The errors are measured in
L1 and L2 norm and refer to the variables ρ (density) and T (temperature).

CWENO-IMEX O2 ε = 10−3

∆t ρL1 O(ρL1 ) ρL2 O(ρL2 )

1.80E−03 – – – –
9.00E−04 1.423E−06 – 6.693E−07 –
4.50E−04 3.794E−07 1.9 1.784E−07 1.9
2.25E−04 9.803E−08 2.0 4.610E−08 2.0

h(Ω ) TL1 O(TL1 ) TL2 O(TL2 )

1.80E−03 – – – –
9.00E−04 5.647E−06 – 2.249E−06 –
4.50E−04 1.511E−06 1.9 6.003E−06 1.9
2.25E−04 3.911E−07 1.9 1.552E−07 2.0

CWENO-IMEX O3 ε = 10−3

h(Ω ) ρL1 O(ρL1 ) ρL2 O(ρL2 )

2.25E−04 – – – –
1.12E−05 7.033E−09 – 3.641E−09 –
5.62E−05 1.051E−09 2.7 5.422E−10 2.7
2.81E−05 1.566E−10 2.8 8.013E−11 2.8

h(Ω ) TL1 O(TL1 ) TL2 O(TL2 )

2.25E−04 – – – –
1.12E−05 2.631E−08 – 1.182E−08 –
5.62E−05 3.908E−09 2.8 1.734E−09 2.8
2.81E−05 5.782E−10 2.8 2.544E−10 2.8

elements and employs around 62 million of particles. The details can be found in [67]. Also in this case, we observe
a good matching between our method and the DSMC solution. Finally, a three-dimensional view is shown at the
bottom for the density profile at different Knudsen numbers highlighting the capability of the method to keep the
one dimensional structure of the solution in presence of an unstructured mesh. Fig. 6 instead shows a comparison
between the Boltzmann and the BGK models for different values of the Knudsen number. As expected [2] the
BGK model tends to over relax the solution towards the fluid limit. This is particularly clear when the Knudsen
number is quite large ε = 5 · 10−3 and it is in line with the theoretical observations which claim that the BGK

odel is adapted for the description of rarefied flows only when the collisional rate is such that the fluid is close
o equilibrium. Nevertheless, other choices of the collision frequency ν in the BGK model may yield solutions that
etter approximate the Boltzmann model even in the rarefied regime [46,68]. Finally, the third order results for the
oltzmann model are compared against the solution obtained by employing a DSMC method in Fig. 7. For the
SMC simulation a Cartesian mesh of 2502 elements is used with around 62 million of particles. An overall very
ood agreement can be appreciated between the solvers, which confirms what already observed for the case of the
uid limit.

.3. Explosion problem

The setup of the explosion problem involves a square computational domain of dimension Ω = [−1; 1]×[−1; 1],
hich is discretized by NP ≈ 16500 Voronoi elements. The initial condition is given in terms of two different states

UL , UR), separated by a discontinuity at distance Rd = 0.5 from the origin:{
UL = (1, 0, 0, 1) R ≤ Rd , (66)

UR = (0.125, 0, 0, 0.8) R > Rd ,
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Table 5
Numerical convergence results for the Boltzmann model at time t f = 9·10−3 with ε = 10−2

on a triangular mesh with characteristic mesh size h(Ω ) = 1/3. The errors are measured in
L1 and L2 norm and refer to the variables ρ (density) and T (temperature).

CWENO-IMEX O2 ε = 10−2

∆t ρL1 O(ρL1 ) ρL2 O(ρL2 )

1.80E−03 – – – –
9.00E−04 2.609E−06 – 7.473E−07 –
4.50E−04 6.438E−07 2.0 1.861E−07 2.0
2.25E−04 1.600E−07 2.0 4.650E−08 2.0

∆t TL1 O(TL1 ) TL2 O(TL2 )

1.80E−03 – – – –
9.00E−04 1.422E−05 – 4.180E−06 –
4.50E−04 3.537E−06 2.0 1.039E−06 2.0
2.25E−04 8.831E−07 2.0 2.593E−07 2.0

CWENO-IMEX O3 ε = 10−2

∆t ρL1 O(ρL1 ) ρL2 O(ρL2 )

1.80E−03 – – – –
9.00E−04 5.084E−08 – 1.957E−08 –
4.50E−04 6.799E−09 2.9 2.665E−09 2.9
2.25E−04 8.825E−10 2.9 3.491E−10 2.9

∆t TL1 O(TL1 ) TL2 O(TL2 )

1.80E−03 – – – –
9.00E−04 2.994E−07 – 9.614E−08 –
4.50E−04 3.874E−08 3.0 1.256E−08 2.9
2.25E−04 4.930E−09 3.0 1.608E−09 3.0

with R =
√

x2 + y2 the radial position. Dirichlet boundary conditions are imposed everywhere and the final time of
the simulation is chosen to be t f = 0.07. The velocity space is composed of 322

= 1024 Cartesian cells ranging in
the interval [−20; 20]2. Fig. 8 depicts the third order numerical results obtained with the CWENO-IMEX scheme
with Knudsen number ε = 5 · 10−5 which approaches the fluid limit. A comparison against the reference solution
of the Euler equations of compressible gas dynamics [69,70] is proposed, showing an overall good agreement
considering the very low number of mesh elements employed. The same simulation is also run with a first order
finite volume scheme which exhibits much more numerical dissipation, as expected. Let us notice that such smoother
profile could even be wrongly interpreted as a different physical regime of the gas flow, mimicking the behavior of
the fluid at larger Knudsen numbers. This underlines the importance of the development of high order numerical
discretizations, in order to correctly capture and simulate the physical behavior of the observed phenomena. Finally,
Fig. 9 reports the numerical distribution of density, horizontal velocity and temperature with Knudsen numbers
ε = 5 · 10−4 and ε = 5 · 10−3. For these regimes, a comparison with a DSMC method is proposed. This method

orks on a regular Cartesian mesh of 2502 elements and employs around 62 million of particles. As for the case
f the fluid limit a good agreement is observed between the two solvers.

.4. Double Mach reflection problem

In this test, we propose to run a slightly modified setting of the double Mach reflection problem originally
roposed in [71]. The setup involves a shock wave with a shock Mach number Ms = 2 which is moving along the

x-direction of the computational domain, where a ramp with angle α =
π
6 is located. The strong shock wave that

hits the ramp yields the development of other two shock waves, one traveling towards the right and the other one
propagating towards the top boundary of the domain. The initial computational domain Ω is discretized with a total
number of elements of N = 6714 and the computational mesh is depicted in Fig. 10 together with a zoom on the
P
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Table 6
Numerical convergence results for the Boltzmann model at time t f = 9 ·10−3 with ε = 100

on a triangular mesh with characteristic mesh size h(Ω ) = 1/3. The errors are measured in
L1 and L2 norm and refer to the variables ρ (density) and T (temperature).

CWENO-IMEX O2 ε = 100

h(Ω ) ρL1 O(ρL1 ) ρL2 O(ρL2 )

1.80E−03 – – – –
9.00E−04 2.231E−06 – 6.224E−07 –
4.50E−04 5.407E−07 2.0 1.508E−07 2.0
2.25E−04 1.331E−07 2.0 3.711E−08 2.0

h(Ω ) TL1 O(TL1 ) TL2 O(TL2 )

1.80E−03 – – – –
9.00E−04 1.245E−05 – 3.762E−06 –
4.50E−04 3.007E−06 2.0 9.076E−07 2.1
2.25E−04 7.389E−07 2.0 2.229E−07 2.0

CWENO-IMEX O3 ε = 100

h(Ω ) ρL1 O(ρL1 ) ρL2 O(ρL2 )

1.80E−03 – – – –
9.00E−04 2.258E−08 – 7.657E−09 –
4.50E−04 2.737E−09 3.0 9.307E−10 3.0
2.25E−04 3.369E−10 3.0 1.148E−10 3.0

h(Ω ) TL1 O(TL1 ) TL2 O(TL2 )

1.80E−03 – – – –
9.00E−04 1.415E−07 – 4.930E−08 –
4.50E−04 1.708E−08 3.1 5.963E−09 3.0
2.25E−04 2.098E−09 3.0 7.334E−10 3.0

Table 7
Computational time for some test cases for Boltzmann and BGK model with
different Knudsen numbers. Absolute time of each simulation measured in
seconds [s] and percentage of the computational time needed to perform the
evaluation of the Boltzmann collision operator w.r.t. to the BGK computational
time τcoll =

(
TBoltz−TBG K

TBG K
· 100

)
(Lax = Lax problem, EP2D = Explosion

problem, DMR = Double Mach Reflection problem).

Test Knudsen TBoltz [s] TBG K [s] τcoll [%]

Lax 5 · 10−3 5.0028E+05 4.8807E+05 2.502
Lax 5 · 10−4 5.1038E+05 4.9976E+05 2.126
Lax 5 · 10−5 5.1142E+05 5.0108E+05 2.064
EP2D 5 · 10−3 8.4881E+06 8.3637E+06 1.488
EP2D 5 · 10−4 8.4893E+06 8.3828E+06 1.270
EP2D 5 · 10−5 8.4900E+06 8.3968E+06 1.110
DMR 5 · 10−3 1.1573E+07 1.1566E+07 0.060
DMR 5 · 10−4 1.1146E+07 1.1070E+07 0.690
DMR 5 · 10−5 1.1134E+07 1.1046E+07 0.797

starting point of the ramp. The initial condition is given in terms of primitive variables and explicitly writes{
UL = (4, 1, 0, 1.25) x ≤ xd ,

UR = (2, 0, 0, 0.50) x > xd ,
(67)

with the initial discontinuity located at xd = 0. Dirichlet boundary conditions are set on the left and right sides,
while sliding wall boundary conditions have been imposed on the remaining sides. The velocity space is bounded in
the interval [−10; 10]2 and is discretized with 322

= 1024 Cartesian cells. The final time is t f = 0.7. Fig. 11 shows
−5
the third order numerical solution for density and temperature with ε = 5 ·10 together with a comparison against
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Fig. 5. Lax shock tube problem at time t f = 0.1 with third order CWENO-IMEX scheme for the Boltzmann model. 1D cut along the x-axis
through the third order numerical results for density (left), horizontal velocity (middle) and temperature (right). Top: comparison between
reference solution with Euler equations and numerical solution with ε = 5 · 10−5. Middle: comparison between numerical solution with

= 5 · 10−4 (blue solid line) and ε = 5 · 10−3 (red solid line). Bottom: three-dimensional view of density profile for the Boltzmann model
ith ε = 5 · 10−5 (left), ε = 5 · 10−4 (middle) and ε = 5 · 10−3 (right). (For interpretation of the references to color in this figure legend,

he reader is referred to the web version of this article.)

he solution obtained by solving the compressible Euler equations with the same order of accuracy. A qualitative
greement of the solution can be appreciated, with the physical variable contours approximated by 21 equidistant
evels for density and temperature in the interval [2; 5] and [0.5; 1.8], respectively. A comparison with the BGK
olution at Knudsen number ε = 5 · 10−3 is finally proposed in Fig. 12, highlighting some differences in the
ehavior of the two models. Specifically, the Boltzmann model exhibits a smoother solution for both density and
emperature, with less small-scale structures around the triple point, which corresponds to the intersection of the
hree shock waves. Compared to the standard double Mach reflection test [71], here the incidence wave has quite a
lower speed which causes a simpler structure of the final solution. This choice is imposed by the impossibility to
orrectly describe the velocity space involved in such a problem using a fixed and uniform in space discretization of
he phase-space. In fact, in order to perform such a study, it would be necessary to describe with the same velocity

esh, distribution functions with low mean velocities and temperatures and distribution functions exhibiting very
arge mean velocities and temperatures. This problem needs an approach with velocity meshes able to adapt to the
ime evolution of the solution both in time and space. This kind of approach is the scope of future investigations.
20
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Fig. 6. Lax shock tube problem with ε = 5 · 10−4 (top row) and ε = 5 · 10−3 (bottom row) for Boltzmann (blue solid line) and BGK (red
solid line) model at time t f = 0.1. 1D cut along the x-axis through the third order numerical results for density (left), horizontal velocity
middle) and temperature (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

Fig. 7. Lax shock tube problem with ε = 5 · 10−4 (top row) and ε = 5 · 10−3 (bottom row) at time t f = 0.1. 1D cut along the x-axis
or density (left), horizontal velocity (middle) and temperature (right). The solid line represents the solution obtained with the third order
WENO-IMEX schemes, while scatter plots represent the results computed with a DSMC simulation on a mesh composed of 2502 Cartesian
ells with approximately 62 · 106 particles.
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Fig. 8. Explosion problem with ε = 5 · 10−5 at time t f = 0.07. Three dimensional view of density profile for Boltzmann model together
ith a 1D cut along the x-axis through the third order numerical results and comparison with exact solution of the Euler equations for
ensity, horizontal velocity and temperature.

.5. Fluid flow around NACA 0012 airfoil

The last test case concerns a more realistic application, namely the study of the flow around a NACA 0012 airfoil
rofile for different rarefied regimes. A slightly modified geometry from the original definition is considered, so that
he airfoil closes at chord c = 1 with a sharp trailing edge. This altered two-dimensional geometrical configuration
f NACA 0012 airfoil is defined by

y = ±0.594689181
(
0.298222773

√
x − 0.127125232x − 0.357907906x2

+ 0.291984971x3
− 0.105174606x4) , (68)

hich corresponds to a perfect scaled copy of the NACA 0012 profile with x ∈ [0; 1.008930411365]. The
irfoil is embedded in a square computational domain Ω = [−5; 5]2 that is discretized with a total number of

NP = 10336 polygonal control volumes. The profile of the airfoil to which is assigned a slip-wall boundary
ondition, is approximated with 100 equidistant points in the x-direction both on the upper and the lower border.
he characteristic mesh size is then progressively increased linearly with the distance from the airfoil, thus ranging
22
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Fig. 9. Explosion problem with ε = 5 · 10−4 (top row) and ε = 5 · 10−3 (middle row) at time t f = 0.07. 1D cut along the x-axis for density
left), horizontal velocity (middle) and temperature (right). The solid line represents the solution obtained with the third order CWENO-IMEX
chemes, while scatter plots represent the results computed with a DSMC simulation on a mesh composed of 2502 Cartesian cells with
pproximately 62 · 106 particles. Bottom: 3D view of the temperature distribution with 40 contour levels within the interval [3; 5.5] for the
WENO-IMEX (left) and DSMC (right) solver.

Fig. 10. Computational mesh with characteristic mesh size h = 1/50 used for the double Mach reflection problem at final time.
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Fig. 11. Double Mach reflection problem at final time t f = 0.7. Third order numerical solution for density (left) and temperature (right) for
the Euler equations (top row) and the Boltzmann model with ε = 5 · 10−5 (bottom row).

Fig. 12. Double Mach reflection problem at final time t f = 0.7 with ε = 5 · 10−3. Third order numerical solution for density (left) and
emperature (right) for the Boltzmann (top row) and the BGK (bottom row) model.

rom h = 1/100 to h = 1/10. Inflow boundary conditions are imposed on the left and the bottom face of the
omain, while transmissive conditions have been set elsewhere. The entire computational mesh and a zoom around
he NACA profile is depicted in Fig. 13, together with the MPI partition of the domain within 64 CPUs. The velocity
omain is discretized with 322 Cartesian cells ranging in the interval V = [−10; 10] × [−10; 10].

With this numerical setting, we consider then two subsonic settings and one supersonic configuration. The second
rder version of the novel CWENO-IMEX schemes is used to run all computations. The first subsonic initial
ondition is given by considering an inflow Mach number of M = 0.5 and an angle of attack of α = 4◦. The
ree-stream conditions are as follows:

(u, v) = (0.5, 0), p = 1, ρ = 1,
∞ ∞ ∞
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Fig. 13. Flow around NACA 0012 airfoil. Computational mesh with NP = 10336 polygonal cells (left), zoom around the airfoil profile
iscretized with 200 points (middle) and MPI domains which splits the computational domain into a total number of 64 sub-domains.

hus the fluid pressure is set to p = p∞/γ . Fig. 14 shows the numerical solution for the Mach number M =

u/(γ R T ) and the temperature at the final time t f = 5 for two different fluid regimes, namely ε = 5 · 10−5 and
ε = 5 · 10−3. The pressure coefficient C p on the upper and the lower surface of the airfoil is also reported. It is
computed as

C p =
p − p∞

1
2ρ∞u2

∞

. (69)

n the fluid limit the results are in excellent agreement with available references in the literature [72] while in the
arefied setting, the pressure coefficients become lower as expected. The second subsonic setting involves an inlet

ach number of M = 0.8 and an angle of attack of α = 1.25◦, therefore a shock wave is generated both on
he upper and the lower surface, as correctly shown in Fig. 15. This simulation is also run for two different fluid
egimes and the results are in qualitatively very good agreement with [72] for the case ε = 5 ·10−5. The presence of
he shock waves can be clearly identified also looking at the pressure coefficient distribution, while in the rarefied
egime with ε = 5 · 10−3 the shocks become milder and the pressure coefficients exhibit a much smoother profile.
inally, as a last example, we consider a supersonic flow with Mach number M = 2 up to the final time t f = 2. The
umerical results are shown in Fig. 16, where it is visible the generation of shock waves both in front of the airfoil
ut also departing from the tail of the NACA 0012 profile. The pressure coefficients show that this simulation can
e regarded as a prototype of a supersonic vehicle reentry which is approaching the soil surface.

. Conclusions

In this work, we have considered a high order in velocity, space and time finite volume method for solving the
oltzmann equation. The proposed approach is based on a spectral discretization of the collision operator, on a
entral WENO polynomial reconstruction and on a high order implicit–explicit time discretization. The scheme is
esigned to work on arbitrarily unstructured control volumes. Up to our knowledge, this is one of the first examples
n which the full Boltzmann model is solved using high order time–space methods on such unstructured meshes. In
articular, we are not aware of any result in the case in which, in the above described framework, high order implicit
ethods which guarantee stability, accuracy and preservation of the asymptotic state are used in a multidimensional

etting for this model.
The numerical part consists of several measures of the theoretical convergence order for the different employed

iscretizations (spectral, CWENO and Runge–Kutta) and for different regimes: from dense fluids to rarefied gases.
n additional measure of the computational costs involved is also reported. A second part consists in proving the

apability of the designed method to deal with standard benchmark problems in gas dynamics. Here, we compare
ur scheme with the limit compressible Euler equations and with a Direct Simulation Monte Carlo method solving
he Boltzmann equation. Comparisons between the Boltzmann and the BGK model are also proposed showing the
neffectiveness of the latter in describing far from equilibrium phenomena. Finally, a more realistic set of simulations

n a NACA wing profile under different regimes and angles of attack is presented. These tests run on a MPI
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Fig. 14. Flow around NACA 0012 airfoil with Mach number M = 0.5 and angle of attack α = 4◦ for ε = 5 · 10−5 (left column) and
ε = 5 · 10−3 (right column) at t f = 5. Top row: 40 Mach number contours in the interval [0.45; 0.55]. Middle row: 40 Mach number
contours in the interval [0.04; 0.68]. Bottom row: pressure coefficient distribution on the upper and lower surfaces of the airfoil.
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ε

c

Fig. 15. Flow around NACA 0012 airfoil with Mach number M = 0.8 and angle of attack α = 1.25◦ for ε = 5 · 10−5 (left column) and
= 5 · 10−3 (right column) at t f = 5. Top row: 40 Mach number contours in the interval [0.38; 0.65]. Middle row: 40 Mach number

ontours in the interval [0.2; 1.2]. Bottom row: pressure coefficient distribution on the upper and lower surfaces of the airfoil.
27
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c

Fig. 16. Flow around NACA 0012 airfoil with Mach number M = 2 and angle of attack α = 2◦ for ε = 5 · 10−5 (left column) and
ε = 5 · 10−3 (right column) at t f = 2. Top row: 40 Mach number contours in the interval [0.42; 1.48]. Middle row: 40 Mach number
ontours in the interval [0.15; 2.3]. Bottom row: pressure coefficient distribution on the upper and lower surfaces of the airfoil.
28
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parallelization version of the code and provide evidence that the method can be applied to large scale simulations.
A very good agreement with the existing literature is observed for these last cases.

In the future, the methods here presented will be extended to the full six dimensional case. We also aim at
onsidering the Discontinuous Galerkin (DG) method for the space discretization and to increase the time precision
nd lowering the computational effort to use linear multistep approaches in time. Finally, a way to better represent
he physical solutions would be to change the support of the distribution function and the nodes where it is defined
s a function of the solution itself. This is a challenging research direction that we would aim to follow in the next
uture.
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Appendix. Symbols and notation

Geometry

dx dimension of the physical space
Ω ⊂ R dx physical space
∂Ω boundary of �

x = (x1, x2) coordinates in the physical space with dx = 2
dv dimension of the velocity space
N size of the discrete velocity space
v coordinates in the velocity space with dv = 2
V Cartesian mesh of the velocity space
∆v mesh spacing of the Cartesian mesh V
k index of the discrete velocity vk

P discrete physical control volume (polygonal shaped)
T discrete physical control volume (triangular shaped)
NT total number of primary triangular elements
i index associated to a polygonal shaped control volume in �

j index associated to a triangular shaped control volume in �

x p internal point of the triangular element
xc vertex of the primary triangulation
xm center of mass of the polygonal element
NP total number of control volumes in the domain �

NVi total number of vertexes of Pi

T (Pi ) sub-triangles of Pi

|Pi | area of Pi

hi =
√

|Pi | characteristic mesh size of Pi

∂ Pi j lateral side of Pi shared with Neumann neighbor Pj

ni j outward pointing unit normal vector between defined along ∂ Pi j
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Model and Discretization

t ∈ R +

0 time coordinate
n time index
∆t = tn+1

− tn time step
v velocity of a particle
f = f (x, v, t) distribution function of particles at space–time coordinates (x, t) with

velocity v

Q( f ) collision operator
Qb( f ) collision operator for the Boltzmann model
Q BG K ( f ) collision operator for the BGK model
M f Maxwellian distribution function
ν > 0 relaxation frequency for the BGK model
ε Knudsen number
R gas constant
ρ macroscopic density
u = (u1, u2) macroscopic velocity with dv = 2
T macroscopic temperature
p macroscopic pressure
E macroscopic energy
U = (ρ, ρu, E) vector of macroscopic quantities
Sdv−1

⊂ R dv unitary sphere in the velocity space
χ ∈ Sdv−1 vector of the unitary sphere
q = v − v⋆ post-collisional velocities for the Boltzmann model
B(v, v⋆, χ) Maxwell pseudo-molecules collision operator
α accommodation coefficient for boundary conditions
n(x) outward pointing unit normal vector of the physical domain
Ek[U ] approximation of M f

f̄ n
k,i cell average distribution function defined on element Pi and velocity vk

at time tn

f̄ n
i vector of the cell average distribution functions on element Pi for all

velocities vk, k = 1, . . . , N at time tn

p(x) polynomial function
M degree of the CWENO reconstruction
M number of degrees of freedom of the high order reconstruction

polynomials
ℓ subscript index pointing to the degrees of freedom (ℓ = 1, . . . , M )
φℓ modal basis functions used to express p(x)
S̃i central reconstruction stencil
Ss

i lateral reconstruction stencil
ps

k,i (x) reconstruction polynomial defined on stencil s for distribution function
f n
k,i

p̂s
ℓ,k,i (x) degrees of freedom of the reconstruction polynomial ps

k,i (x)
λs,i normalized linear weights of CWENO reconstruction
ωs,k,i nonlinear weights of CWENO reconstruction
σs,k,i oscillation indicators
W superscript used to address the CWENO reconstruction operator
L( fk) discrete spatial operator used for the approximation of the flux term

vk · ∇x fk

ã, w̃ coefficients and weights of the explicit Butcher tableau of the IMEX
scheme
30
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R

a, w coefficients and weights of the implicit Butcher tableau of the IMEX
scheme

F̄ (l)
i,k vector of cell average quantities at the stage l of the IMEX scheme

G P ( f ) penalization term for the collision operator of the Boltzmann model
CFL Courant–Friedrichs–Lewy number
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